Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.697
1.
Front Immunol ; 15: 1377374, 2024.
Article En | MEDLINE | ID: mdl-38745662

Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis-related hospitalizations among children under 5 years of age, with reinfection being common throughout life. Maternal vaccination has emerged as a promising strategy, delivering elevated antibody levels to newborns for immediate protection. However, limited research has explored the protective efficacy of maternal antibodies (matAbs) against secondary RSV infections in offspring. To address this gap, we employed a mouse model of maternal RSV vaccination and secondary infection of offspring to evaluate lung pathology following RSV reinfection in mice with varying levels of maternal antibody (matAb). Additionally, we aimed to investigate the potential causes of exacerbated lung inflammation in offspring with high matAb levels following secondary RSV exposure. Our findings revealed that offspring with elevated levels of maternal pre-F antibody demonstrated effective protection against lung pathology following the initial RSV infection. However, this protection was compromised upon reinfection, manifesting as heightened weight loss, exacerbated lung pathology, increased expression of RSV-A N genes, eosinophilia, enhanced IL-5, IL-13, MUC5AC, and eosinophils Major Basic Protein (MBP) production in lung tissue compared to offspring lacking matAbs. Importantly, these unexpected outcomes were not attributed to antibody-dependent enhancement (ADE) resulting from declining matAb levels over time. Notably, our findings showed a decline in secretory IgA (sIgA), mucosal IgA, and mucosal IgG levels in offspring with high matAb levels post-primary RSV challenge. We propose that this decline may be a critical factor contributing to the ineffective protection observed during secondary RSV exposure. Overall, these findings offer valuable insights into maternal vaccination against RSV, contributing to a comprehensive understanding and mitigation of potential risks associated with maternal RSV vaccination.


Antibodies, Viral , Pneumonia , Respiratory Syncytial Virus Infections , Animals , Respiratory Syncytial Virus Infections/immunology , Mice , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Pneumonia/immunology , Immunity, Maternally-Acquired , Lung/immunology , Lung/virology , Lung/pathology , Pregnancy , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/administration & dosage , Disease Models, Animal , Respiratory Syncytial Viruses/immunology , Mice, Inbred BALB C
2.
Front Nutr ; 11: 1367086, 2024.
Article En | MEDLINE | ID: mdl-38606018

Background: Alzheimer's disease (AD) is an age-related neurodegenerative disorder with no effective interventions for curing or modifying its progression. However, emerging research suggests that vitamin A in the diet may play a role in both the prevention and treatment of AD, although the exact mechanisms are not fully understood. Objectives: This study aims to investigate the dietary vitamin A modifies the gut microbiota and intestinal tissue transcriptome, impacting intestinal permeability and the release of inflammatory factors, thereby influencing Aß pathology shedding light on its potential as a dietary intervention for AD prevention and treatment. Methods: The APP/PS1-AD mouse model was employed and divided into three dietary groups: vitamin A-deficient (VAD), normal vitamin A (VAN), and vitamin A-supplemented (VAS) for a 12-week study. Neurobehavioral functions were assessed using the Morris Water Maze Test (MWM). Enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of Diamine Oxidase (DAO), D-lactate, IL-6, IL-1ß, and TNF-a cytokines. Serum vitamin A levels were analyzed via LC-MS/MS analysis. Immunohistochemical analysis and morphometry were performed to evaluate the deposition of Aß in brain tissue. The gut microbiota of APP/PS1 mice was analyzed using 16S rRNA sequencing analysis. Additionally, transcriptomic analysis was conducted on intestinal tissue from APP/PS1 mice. Results: No significant changes in food intake and body weight were observed among the groups. However, the VAD and VAS groups showed reduced food intake compared to the VAN group at various time points. In terms of cognitive function, the VAN group performed better in the Morris Water Maze Test, indicating superior learning and memory abilities. The VAD and VAS groups exhibited impaired performance, with the VAS group performing relatively better than the VAD group. Serum vitamin A concentrations differed significantly among the groups, with the VAS group having the highest concentration. Aß levels were significantly higher in the VAD group compared to both the VAN and VAS groups. Microbial analysis revealed that the VAS and VAN groups had higher microbial diversity than the VAD group, with specific taxa characterizing each group. The VAN group was characterized by taxa such as Actinohacteriota and Desulfovibrionaceae, while the VAD group was characterized by Parabacteroides and Tannerellaceae. The VAS group showed similarities with both VAN and VAD groups, with taxa like Desulfobacterota and Desulfovibrionaceae being present. The VAD vs. VAS, VAD vs. VAN, and VAS vs. VAN comparisons identified 571, 313, and 243 differentially expressed genes, respectively, which associated with cellular and metabolic processes, and pathway analysis revealed enrichment in pathways related to chemical carcinogenesis, drug metabolism, glutathione metabolism, and immune-related processes. The VAD group exhibited higher levels of D-lactate, diamine oxidase, and inflammatory cytokines (TNF-a, IL-1ß, IL-6) compared to the VAN and VAS groups. Conclusion: Dietary vitamin A supplementation modulates the gut microbiota, intestinal permeability, inflammatory factors, and Aß protein formation, offering insights into the pathogenesis of AD and potential therapeutic avenues for further exploration. This research highlights the intricate interplay between diet, gut microbiota, and neurodegenerative processes, emphasizing the importance of dietary interventions in managing AD-related pathologies.

3.
J Colloid Interface Sci ; 667: 157-165, 2024 Aug.
Article En | MEDLINE | ID: mdl-38636217

The practical application of zinc ion batteries (ZIBs) can be facilitated by designing cathode materials with unique structures that can overcome the critical problems of slow reaction kinetics and large volume expansion associated with the intercalation reaction of divalent zinc ions. In this study, a novel urchin-like (NH4)2V10O25·8H2O assembled from nanorods was synthesized by a simple hydrothermal method, noted as U-NVO. The interlayer organic pillar of cetyltrimethylammonium cation (CTAB) has been intercalated between layers to regulate the interlayer microstructure and expand the interlayer spacing to 1.32 nm, which effectively increased the contact between the electrode and electrolyte interface and shortened the diffusion path of electrolyte ions. The interlayer pillars of structural H2O and NH4+ provide a flexible framework structure and enhance the cohesion of the layered structure, which helps to maintain structural stability during the charging and discharging process, resulting in long-term durability. These unique properties result in the U-NVO cathodes demonstrating high specific capacity (401.7 mA h g-1 at 0.1 A g-1), excellent rate capability (99.6 % retention from 0.1 to 5 A g-1 and back to 0.1 A g-1), and long-term cycling performance (∼87.5 % capacity retention after 2600 cycles). These results offer valuable insights into the design of high-performance vanadium oxide cathode materials.

4.
Adv Sci (Weinh) ; : e2306253, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582510

The extensive application of nuclear technology has increased the potential of uncontrolled radiation exposure to the public. Since skin is the largest organ, radiation-induced skin injury remains a serious medical concern. Organisms evolutionally develop distinct strategies to protect against environment insults and the related research may bring novel insights into therapeutics development. Here, 26 increased peptides are identified in skin tissues of frogs (Pelophylax nigromaculatus) exposed to electron beams, among which four promoted the wound healing of irradiated skin in rats. Specifically, radiation-induced frog skin peptide-2 (RIFSP-2), from histone proteolysis exerted membrane permeability property, maintained cellular homeostasis, and reduced pyroptosis of irradiated cells with decreased TBK1 phosphorylation. Subsequently, stearyl-CoA desaturase 1 (SCD1) is identified, a critical enzyme in biogenesis of monounsaturated fatty acids (MUFAs) as a direct target of RIFSP-2 based on streptavidin-biotin system. The lipidomic analysis further assured the restrain of MUFAs biogenesis by RIFSP-2 following radiation. Moreover, the decreased MUFA limited radiation-induced and STING-mediated inflammation response. In addition, genetic depletion or pharmacological inhibition of STING counteracted the decreased pyroptosis by RIFSP-2 and retarded tissue repair process. Altogether, RIFSP-2 restrains radiation-induced activation of SCD1-MUFA-STING axis. Thus, the stress-induced amphibian peptides can be a bountiful source of novel radiation mitigators.

5.
Food Chem ; 451: 139441, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38678656

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.

6.
Am J Gastroenterol ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38619136

INTRODUCTION: Fully covered self-expandable metal stents (FCSEMSs) are commonly placed in patients with biliary stricture during endoscopic retrograde cholangiopancreatography (ERCP). However, up to 40% of migration has been reported, resulting in treatment failure or the requirement for further intervention. Here, we aimed to investigate the effects of metal clip anchoring on preventing the migration of FCSEMS. METHODS: Consecutive patients requiring placement of FCSEMS were included in this multicenter randomized trial. The enrolled patients were randomly assigned in a 1:1 ratio to receive clip anchoring (clip group) or not (control group). The primary outcome was the migration rate at 6 months after stent insertion. The secondary outcomes were the rates of proximal and distal migration and stent-related adverse events. The analysis followed the intention-to-treat principle. RESULTS: From February 2020 to November 2022, 180 patients with biliary stricture were enrolled, with 90 in each group. The baseline characteristics were comparable between the 2 groups. The overall rate of stent migration at 6 months was significantly lower in the clip group compared with the control group (16.7% vs 30.0%, P = 0.030). The proximal and distal migration rates were similar in the 2 groups (2.2% vs 5.6%, P = 0.205; 14.4% vs 22.2%, P = 0.070). Notably, none of the patients (0/8) who received 2 or more clips experienced stent migration. There were no significant differences in stent-related adverse events between the 2 groups. DISCUSSION: Our data suggest that clip-assisted anchoring is an effective and safe method for preventing migration of FCSEMS without increasing the adverse events.

7.
Int J Older People Nurs ; 19(3): e12609, 2024 May.
Article En | MEDLINE | ID: mdl-38622947

BACKGROUND: The International Classification of Functioning, Disability and Health (ICF) offers a standardized international terminology to operationalize function management across multiple domains, but the summary score of the ICF qualifier scale provides limited information on the comparison of personal abilities and functioning difficulties. OBJECTIVES: To enhance the interpretative power of the ICF-based Health-oriented Personal Evaluation for the community-dwelling older person (iHOPE-OP) scale through the implementation of the item response theory (IRT) modelling. METHODS: This cross-sectional, multi-centre study administrated 161 ICF categories (58 on body functions, 15 on body structures, 60 on activities or participation and 28 on environmental factors) to evaluate the functional level of 338 older citizens (female = 158, male = 180) residing in community or supportive living facilities. The validation process encompassed assessing the IRT model fitness and evaluating the psychometric properties of the IRT-derived iHOPE-OP scale. RESULTS: The age of participants ranged from 60 to 94.57, with the mean age of 70. The analysis of non-parametric and parametric models revealed that the three-parameter logistic IRT model, with a dichotomous scoring principle, exhibited the best fit. The 53-item iHOPE-OP scale demonstrated high reliability (Cronbach's α = 0.9729, Guttman's lambda-2 = 0.9749, Molenaar-Sijtsma Statistic = 0.9803, latent class reliability coefficient = 0.9882). There was a good validity between person abilities and the Barthel Index (p < .001, r = .83), as well as instrumental activities of daily living (p < .001, r = .84). CONCLUSIONS: IRT methods generate the reliable and valid iHOPE-OP scale with the most discriminable and minimal items to represent the older person's functional performance at a comprehensive level. The use of the Wright map can aid in presby-functioning management by visualizing item difficulties and person abilities. IMPLICATIONS FOR PRACTICE: Considering the intricate and heterogeneous health status of older persons, a single functional assessment tool might not fulfil the need to fully understand the multifaceted health status. For use in conjunction with the IRT and ICF framework, the reliable and valid iHOPE-OP scale was developed and can be applied to capture presby-functioning. The Wright map depicts the distribution of item difficulties and person abilities on the same scale that facilitates person-centred goal setting and tailors intervention.


Activities of Daily Living , Independent Living , Humans , Male , Female , Aged , Aged, 80 and over , International Classification of Functioning, Disability and Health , Disability Evaluation , Cross-Sectional Studies , Reproducibility of Results
8.
Front Neurosci ; 18: 1346634, 2024.
Article En | MEDLINE | ID: mdl-38525376

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a promising brain stimulation modality in poststroke upper extremity rehabilitation. Although several studies have examined the safety and reliability of taVNS, the mechanisms underlying motor recovery in stroke patients remain unclear. Objectives: This study aimed to investigate the effects of taVNS paired with task-oriented training (TOT) on upper extremity function in patients with subacute stroke and explore the potential underlying mechanisms. Methods: In this double-blinded, randomized, controlled pilot trial, 40 patients with subacute stroke were randomly assigned to two groups: the VNS group (VG), receiving taVNS during TOT, and the Sham group (SG), receiving sham taVNS during TOT. The intervention was delivered 5 days per week for 4 weeks. Upper extremity function was measured using the Fugl-Meyer Assessment-Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT). Activities of daily living were measured by the modified Barthel Index (MBI). Motor-evoked potentials (MEPs) were measured to evaluate cortical excitability. Assessments were administered at baseline and post-intervention. Additionally, the immediate effect of taVNS was detected using functional near-infrared spectroscopy (fNIRS) and heart rate variability (HRV) before intervention. Results: The VG showed significant improvements in upper extremity function (FMA-UE, ARAT) and activities of daily living (MBI) compared to the SG at post-intervention. Furthermore, the VG demonstrated a higher rate of elicited ipsilesional MEPs and a shorter latency of MEPs in the contralesional M1. In the VG, improvements in FMA-UE were significantly associated with reduced latency of contralesional MEPs. Additionally, fNIRS revealed increased activation in the contralesional prefrontal cortex and ipsilesional sensorimotor cortex in the VG in contrast to the SG. However, no significant between-group differences were found in HRV. Conclusion: The combination of taVNS with TOT effectively improves upper extremity function in patients with subacute stroke, potentially through modulating the bilateral cortex excitability to facilitate task-specific functional recovery.

9.
Sci Rep ; 14(1): 6853, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514767

The particle breakage effect and compression characteristics of calcareous sand are related to the water content in the sand material. However, the effects of water content on the particle breakage and compression characteristics of calcareous sand have rarely been investigated. In this work, 50 sets of confined compression tests were conducted on calcareous sand specimens, and the compression characteristics and particle breakage effects of two single-particle-size groups (particle size ranges of 1-0.5 mm and 0.5-0.25 mm) of calcareous sand were investigated under five different water contents. The test results showed that with the increase in the water content, the final compression deformation of calcareous sand was positively correlated with the water content. The final compression deformation decreased when the water content reached a certain value. The water content corresponding to the peak final compression deformation was related to the gradation of the calcareous sand; the specific values were 10% and 15% for particle size ranges of 1-0.5 mm and 0.5-0.25 mm, respectively. With the increase in the water content, the slope of the loading curve of calcareous sand appeared to increase and then decrease, reaching maximum when the water content was 10%. Moreover, the slope of the loading curve was close to twice that of the loading curve of dry sand, whereas the slope of the unloading curve changed little. Under the same water content, the initial gradation had no effect on the compression and unloading characteristics of the specimens beyond a vertical pressure of 1 MPa. The effects of the variation in the water content on the particle breakage of calcareous sand were mainly reflected in the softening effect of water on the specimen particles, which reduced the Mohr strength of the particles.

10.
Parasite ; 31: 19, 2024.
Article En | MEDLINE | ID: mdl-38530212

Trichomonads are protozoan symbionts with the capacity to infect vertebrates including humans and non-human primates (NHPs), sometimes with pathogenic effects. However, their diversity and prevalence in NHPs in China are poorly understood. A total of 533 fecal samples were collected from captive NHPs in Yunnan Province, China, of which 461 samples from Macaca fascicularis and 72 from Macaca mulatta. Trichomonadidae species were identified using PCR amplification of the ITS-1/5.8S/ITS-2 sequences. The overall prevalence of trichomonads in NHPs was determined to be 11.4% (61/533), with gender, diarrhea, and region identified as potential risk factors for the infections. Sequence alignment and phylogenetic analysis identified three species of trichomonads, i.e., Trichomitopsis minor (n = 45), Pentatrichomonas hominis (n = 11), and Tetratrichomonas sp. (n = 5). To the best of our knowledge, this is the first study to report Trichomitopsis minor infection in NHPs in China. Of note, Pentatrichomonas hominis is generally recognized as a parasitic organism affecting humans. Collectively, our results suggest that NHPs are potential sources of zoonotic trichomonad infections, highlighting the importance of surveillance and control measures to protect human and animal populations.


Title: Prévalence des Trichomonadidae intestinaux chez les primates non humains captifs en Chine. Abstract: Les Trichomonadidae sont des symbiotes protozoaires capables d'infecter les vertébrés, notamment les humains et les primates non humains (PNH), parfois avec des effets pathogènes. Cependant, leur diversité et leur prévalence chez les PNH en Chine sont mal comprises. Au total, 533 échantillons fécaux ont été collectés sur des PNH captifs dans la province du Yunnan, en Chine, dont 461 échantillons de Macaca fascicularis et 72 de Macaca mulatta. Les espèces de Trichomonadidae ont été identifiées par amplification PCR des séquences ITS-1/5.8S/ITS-2. La prévalence globale des Trichomonadidae dans les PNH a été déterminée à 11,4 % (61 / 533) et le sexe, la diarrhée et la région ont été identifiés comme facteurs de risque potentiels d'infection. L'alignement des séquences et l'analyse phylogénétique ont identifié trois espèces de Trichomonadidae, à savoir Trichomitopsis minor (n = 45), Pentatrichomonas hominis (n = 11) et Tetratrichomonas sp. (n = 5). À notre connaissance, il s'agit de la première étude à signaler une infection par Trichomitopsis minor chez les PNH en Chine. Il convient de noter que Pentatrichomonas hominis est généralement reconnu comme un organisme parasitaire affectant les humains. Collectivement, nos résultats suggèrent que les PNH sont des sources potentielles d'infections zoonotiques à Trichomonadidae, soulignant l'importance des mesures de surveillance et de contrôle pour protéger les populations humaines et animales.


Primates , Trichomonas , Animals , China/epidemiology , Phylogeny , Prevalence , Intestines , Zoonoses/epidemiology
11.
Bioorg Med Chem Lett ; 104: 129711, 2024 May 15.
Article En | MEDLINE | ID: mdl-38521175

WRN helicase is a critical protein involved in maintaining genomic stability, utilizing ATP hydrolysis to dissolve DNA secondary structures. It has been identified as a promising synthetic lethal target for microsatellite instable (MSI) cancers. However, few WRN helicase inhibitors have been discovered, and their potential binding sites remain unexplored. In this study, we analyzed potential binding sites for WRN inhibitors and focused on the ATP-binding site for screening new inhibitors. Through molecular dynamics-enhanced virtual screening, we identified two compounds, h6 and h15, which effectively inhibited WRN's helicase and ATPase activity in vitro. Importantly, these compounds selectively targeted WRN's ATPase activity, setting them apart from other non-homologous proteins with ATPase activity. In comparison to the homologous protein BLM, h6 exhibits some degree of selectivity towards WRN. We also investigated the binding mode of these compounds to WRN's ATP-binding sites. These findings offer a promising strategy for discovering new WRN inhibitors and present two novel scaffolds, which might be potential for the development of MSI cancer treatment.


DNA Helicases , Molecular Dynamics Simulation , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA/chemistry , Binding Sites , Adenosine Triphosphate , RecQ Helicases/metabolism
12.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448545

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Exosomes , Muscular Dystrophy, Duchenne , Animals , Mice , Dystrophin/genetics , Mice, Inbred mdx , Exosomes/metabolism , Morpholinos/metabolism , Morpholinos/pharmacology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/metabolism , Oligonucleotides/therapeutic use
13.
J Colloid Interface Sci ; 665: 500-509, 2024 Jul.
Article En | MEDLINE | ID: mdl-38547631

Constructing a heterojunction by combining two semiconductors with similar band structures is a successful approach to obtaining photocatalysts with high efficiency. Herein, a CuPc/DR-MoS2 heterojunction involving copper phthalocyanine (CuPc) and molybdenum disulfide with S-rich vacancies (13.66%) is successfully prepared by the facile hydrothermal method. Experimental results and theoretical calculations firmly demonstrated that photoelectrons exhibit an S-scheme charge transfer mechanism in the CuPc/DR-MoS2 heterojunction. The S-scheme heterojunction system has proven significant advantages in promoting the charge separation and transfer of photogenerated carriers, enhancing visible-light responsiveness, and achieving robust photoredox capability. As a result, the optimized 3CuPc/DR-MoS2 S-scheme heterojunction exhibits photocatalytic yields of CO and CH4 at 200 and 111.6 µmol g-1h-1, respectively. These values are four times and 4.5 times greater than the photocatalytic yields of pure DR-MoS2. This study offers novel perspectives on the advancement of innovative and highly effective heterojunction photocatalysts.

14.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462771

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Multiple Myeloma , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , CRISPR-Cas Systems , Disease Models, Animal , Lipid Peroxidation , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Multiple Myeloma/drug therapy
15.
Mol Cell Biochem ; 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38438822

Diabetes is a major risk factor for cardiovascular disease. However, the exact mechanism by which diabetes contributes to vascular damage is not fully understood. The aim of this study was to investigate the role of SUMO-1 mediated SERCA2a SUMOylation in the development of atherosclerotic vascular injury associated with diabetes mellitus. ApoE-/- mice were treated with streptozotocin (STZ) injection combined with high-fat feeding to simulate diabetic atherosclerosis and vascular injury. Human aortic vascular smooth muscle cells (HAVSMCs) were treated with high glucose (HG, 33.3 mM) and palmitic acid (PA, 200 µM) for 24 h to mimic a model of diabetes-induced vascular injury in vitro. Aortic vascular function, phenotypic conversion, migration, proliferation, intracellular Ca2+ concentration, the levels of small ubiquitin-like modifier type 1 (SUMO1), SERCA2a and SUMOylated SERCA2a were detected. Diabetes-induced atherosclerotic mice presented obvious atherosclerotic plaques and vascular injury, companied by significantly lower levels of SUMO1 and SERCA2a in aorta. HG and PA treatment in HAVSMCs reduced the expressions of SUMO1, SERCA2a and SUMOylated SERCA2a, facilitated the HAVSMCs phenotypic transformation, proliferation and migration, attenuated the Ca2+ transport, and increased the resting intracellular Ca2+ concentration. We also confirmed that SUMO1 directly bound to SERCA2a in HAVSMCs. Overexpression of SUMO1 restored the function and phenotypic contractile ability of HAVSMCs by upregulating SERCA2a SUMOylation, thereby alleviating HG and PA-induced vascular injury. These observations suggest an essential role of SUMO1 to protect diabetes-induced atherosclerosis and aortic vascular injury by the regulation of SERCA2a-SUMOylation and calcium homeostasis.

16.
Adv Sci (Weinh) ; : e2310146, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38526153

Bladder cancer (BC) is one of the most common tumors characterized by a high rate of relapse and a lack of targeted therapy. Here, YEATS domain-containing protein 4 (YEATS4) is an essential gene for BC cell viability using CRISPR-Cas9 library screening is reported, and that HUWE1 is an E3 ligase responsible for YEATS4 ubiquitination and proteasomal degradation by the Protein Stability Regulators Screening Assay. KAT8-mediated acetylation of YEATS4 impaired its interaction with HUWE1 and consequently prevented its ubiquitination and degradation. The protein levels of YEATS4 and KAT8 are positively correlated and high levels of these two proteins are associated with poor overall survival in BC patients. Importantly, suppression of YEATS4 acetylation with the KAT8 inhibitor MG149 decreased YEATS4 acetylation, reduced cell viability, and sensitized BC cells to cisplatin treatment. The findings reveal a critical role of the KAT8/YEATS4 axis in both tumor growth and cisplatin sensitivity in BC cells, potentially generating a novel therapeutic strategy for BC patients.

17.
Virol J ; 21(1): 62, 2024 03 07.
Article En | MEDLINE | ID: mdl-38454522

BACKGROUND: In China, respiratory syncytial virus (RSV) infections traditionally occur during the spring and winter seasons. However, a shift in the seasonal trend was noted in 2020-2022, during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: This study investigated the seasonal characteristics of RSV infection in children hospitalized with acute lower respiratory tract infections (ALRTIs). The RSV epidemic season was defined as RSV positivity in > 10% of the hospitalized ALRTI cases each week. Nine RSV seasons were identified between 2013 and 2022, and nonlinear ordinary least squares regression models were used to assess the differences in year-to-year epidemic seasonality trends. RESULTS: We enrolled 49,658 hospitalized children diagnosed with ALRTIs over a 9-year period, and the RSV antigen-positive rate was 15.2% (n = 7,566/49,658). Between 2013 and 2022, the average onset and end of the RSV season occurred in week 44 (late October) and week 17 of the following year, respectively, with a typical duration of 27 weeks. However, at the onset of the COVID-19 pandemic, the usual spring RSV peak did not occur. Instead, the 2020 epidemic started in week 32, and RSV seasonality persisted into 2021, lasting for an unprecedented 87 weeks before concluding in March 2022. CONCLUSIONS: RSV seasonality was disrupted during the COVID-19 pandemic, and the season exhibited an unusually prolonged duration. These findings may provide valuable insights for clinical practice and public health considerations.


COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Pandemics , Seasons , China/epidemiology , COVID-19/epidemiology
20.
Cancer Lett ; 586: 216708, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38336287

Intratumor heterogeneity is one of the major features of cancers, leading to aggressive disease and treatment failure. Cancer stem-like cells (CSCs) are believed to give rise to the heterogeneous cell types within tumors. Hence, understanding the regulatory mechanism underlying the recurrence process of heterogeneous tumor by CSCs could facilitate the development of CSC-targeted therapies. Here, utilizing single-cell transcriptomics, we present the molecular profile of osteosarcoma CSCs-derived heterogeneous tumors consisting of CSC clusters, osteoprogenitor and differentiated cell types, such as pre-osteoblasts, osteoblasts and chondroblasts. Furthermore, by constructing the comprehensive map of modulated genes during CSCs self-renewal and differentiation, we identify RAN exhibiting specific peak expression in osteosarcoma CSCs clusters which is transcriptionally up-regulated by MYBL2. Functionality, MYBL2-RAN pathway promotes the CSCs self-renewal by enhancing the nuclear accumulation of MYC protein, which in turn boosts the overexpression of RAN as a positive feedback. Importantly, blockage of MYBL2-RAN pathway sensitizes CSCs to cisplatin treatment and synergistically enhanced the cisplatin-induced cytotoxicity. Both MYBL2 and RAN are highly expressed in clinical osteosarcoma tissues which indicate poor prognosis. Collectively, our study provides advanced insights into the regeneration process of heterogeneous tumor originating from CSCs and highlights the MYBL2-RAN pathway as a promising target for CSC-based therapy in osteosarcoma.


Bone Neoplasms , Osteosarcoma , Humans , Bone Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Neoplastic Stem Cells/metabolism , Osteosarcoma/drug therapy , Trans-Activators/metabolism , Up-Regulation
...